Lysine Succinylation Contributes to Aflatoxin Production and Pathogenicity in Aspergillus flavus*

نویسندگان

  • Silin Ren
  • Mingkun Yang
  • Yuewei Yue
  • Feng Ge
  • Yu Li
  • Xiaodong Guo
  • Jia Zhang
  • Feng Zhang
  • Xinyi Nie
  • Shihua Wang
چکیده

Aspergillus flavus (A. flavus) is a ubiquitous saprophytic and pathogenic fungus that produces the aflatoxin carcinogen, and A. flavus can have tremendous economic and health impacts worldwide. Increasing evidence demonstrates that lysine succinylation plays an important regulatory role in metabolic processes in both bacterial and human cells. However, little is known about the extent and function of lysine succinylation in A. flavus Here, we performed a global succinylome analysis of A. flavus using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 985 succinylation sites on 349 succinylated proteins were identified in this pathogen. Bioinformatics analysis revealed that the succinylated proteins were involved in various biological processes and were particularly enriched in the aflatoxin biosynthesis process. Site-specific mutagenesis and biochemical studies showed that lysine succinylation on the norsolorinic acid reductase NorA (AflE), a key enzyme in aflatoxins biosynthesis, can affect the production of sclerotia and aflatoxins biosynthesis in A. flavus. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and aflatoxins biosynthesis in A. flavus Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this pathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus

Lysine methyltransferases transfer methyl groups in specific lysine sites, which regulates a variety of important biological processes in eukaryotes. In this study, we characterized a novel homolog of the yeast methyltransferase DOT1 in A. flavus, and observed the roles of dot1 in A. flavus. Deletion of dot1 showed a significant decrease in conidiation, but an increase in sclerotia formation. A...

متن کامل

The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity

Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleu...

متن کامل

The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall...

متن کامل

Evaluation of Contamination of Aspergillus flavus and Aflatoxin Production in Pistachio Cultivars and Investigation of a Chemical Controlling Method

In order to study the contamination of Aspergillus flavus and aflatoxin production in pistachio cultivars in the Semnan province, eight cultivars of pistachio were collected from major pistachio growing areas. Using the serial dilution method, ground pistachio kernels were inoculated on plates containing AFPA medium and incubated at 28° C. This experiment was performed using three replications ...

متن کامل

Biosynthesized Zinc Oxide nanoparticles control the growth of Aspergillus flavus and its aflatoxin production

The infection of Aspergillus flavus and its aflatoxin production pose a severe threat to humans, animals as well as plants life. Their inhibition using green techniques are considered as one of the important challenges. The present study outlines the antifungal activity of the ZnO nanoparticles (NPs) synthesized from lemongrass leaf extract and their effect on the mycelial growth of <e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018